Context
Context provides user analytics for LLM-powered products and features.
With Context
, you can start understanding your users and improving
their experiences in less than 30 minutes.
In this guide we will show you how to integrate with Context.
Installation and Setup
!pip install context-python --upgrade
Getting API Credentials
To get your Context API token:
- Go to the settings page within your Context account (https://with.context.ai/settings).
- Generate a new API Token.
- Store this token somewhere secure.
Setup Context
To use the ContextCallbackHandler
, import the handler from Langchain
and instantiate it with your Context API token.
Ensure you have installed the context-python
package before using the
handler.
import os
from langchain.callbacks import ContextCallbackHandler
token = os.environ["CONTEXT_API_TOKEN"]
context_callback = ContextCallbackHandler(token)
Usage
Context callback within a chat model
The Context callback handler can be used to directly record transcripts between users and AI assistants.
import os
from langchain.callbacks import ContextCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
SystemMessage,
)
token = os.environ["CONTEXT_API_TOKEN"]
chat = ChatOpenAI(
headers={"user_id": "123"}, temperature=0, callbacks=[ContextCallbackHandler(token)]
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(content="I love programming."),
]
print(chat(messages))
Context callback within Chains
The Context callback handler can also be used to record the inputs and outputs of chains. Note that intermediate steps of the chain are not recorded - only the starting inputs and final outputs.
Note: Ensure that you pass the same context object to the chat model and the chain.
Wrong: >
python > chat = ChatOpenAI(temperature=0.9, callbacks=[ContextCallbackHandler(token)]) > chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[ContextCallbackHandler(token)]) >
Correct:
>python >handler = ContextCallbackHandler(token) >chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) >chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback]) >
import os
from langchain.callbacks import ContextCallbackHandler
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
)
token = os.environ["CONTEXT_API_TOKEN"]
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template="What is a good name for a company that makes {product}?",
input_variables=["product"],
)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
callback = ContextCallbackHandler(token)
chat = ChatOpenAI(temperature=0.9, callbacks=[callback])
chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])
print(chain.run("colorful socks"))