ChatOpenAI
This notebook covers how to get started with OpenAI chat models.
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(temperature=0)
The above cell assumes that your OpenAI API key is set in your environment variables. If you would rather manually specify your API key and/or organization ID, use the following code:
chat = ChatOpenAI(temperature=0, openai_api_key="YOUR_API_KEY", openai_organization="YOUR_ORGANIZATION_ID")
Remove the openai_organization parameter should it not apply to you.
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French. I love programming."
),
]
chat(messages)
AIMessage(content="J'adore la programmation.", additional_kwargs={}, example=False)
You can make use of templating by using a MessagePromptTemplate
. You
can build a ChatPromptTemplate
from one or more
MessagePromptTemplates
. You can use ChatPromptTemplate
’s
format_prompt
– this returns a PromptValue
, which you can convert to
a string or Message object, depending on whether you want to use the
formatted value as input to an llm or chat model.
For convenience, there is a from_template
method exposed on the
template. If you were to use this template, this is what it would look
like:
template = (
"You are a helpful assistant that translates {input_language} to {output_language}."
)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages(
[system_message_prompt, human_message_prompt]
)
# get a chat completion from the formatted messages
chat(
chat_prompt.format_prompt(
input_language="English", output_language="French", text="I love programming."
).to_messages()
)
AIMessage(content="J'adore la programmation.", additional_kwargs={}, example=False)
Fine-tuning
You can call fine-tuned OpenAI models by passing in your corresponding
modelName
parameter.
This generally takes the form of
ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}
. For example:
fine_tuned_model = ChatOpenAI(
temperature=0, model_name="ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR"
)
fine_tuned_model(messages)
AIMessage(content="J'adore la programmation.", additional_kwargs={}, example=False)