Elasticsearch
Elasticsearch is a distributed, RESTful search and analytics engine. It provides a distributed, multi-tenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.
In this notebook, we’ll demo the SelfQueryRetriever
with an
Elasticsearch
vector store.
Creating an Elasticsearch vector store
First, we’ll want to create an Elasticsearch
vector store and seed it
with some data. We’ve created a small demo set of documents that contain
summaries of movies.
Note: The self-query retriever requires you to have lark
installed
(pip install lark
). We also need the elasticsearch
package.
#!pip install -qU lark elasticsearch
WARNING: You are using pip version 22.0.4; however, version 23.3 is available.
You should consider upgrading via the '/Users/joe/projects/elastic/langchain/libs/langchain/.venv/bin/python3 -m pip install --upgrade pip' command.
import getpass
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from langchain.vectorstores import ElasticsearchStore
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
vectorstore = ElasticsearchStore.from_documents(
docs,
embeddings,
index_name="elasticsearch-self-query-demo",
es_url="http://localhost:9200",
)
Creating our self-querying retriever
Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
Testing it out
And now we can try actually using our retriever!
# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
Filter k
We can also use the self query retriever to specify k
: the number of
documents to fetch.
We can do this by passing enable_limit=True
to the constructor.
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.get_relevant_documents("what are two movies about dinosaurs")
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]
Complex queries in Action!
We’ve tried out some simple queries, but what about more complex ones? Let’s try out a few more complex queries that utilize the full power of Elasticsearch.
retriever.get_relevant_documents(
"what animated or comedy movies have been released in the last 30 years about animated toys?"
)
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]
vectorstore.client.indices.delete(index="elasticsearch-self-query-demo")