Skip to main content

Gradient

Gradient allows to create Embeddings as well fine tune and get completions on LLMs with a simple web API.

This notebook goes over how to use Langchain with Embeddings of Gradient.

Imports

from langchain.embeddings import GradientEmbeddings

Set the Environment API Key

Make sure to get your API key from Gradient AI. You are given \$10 in free credits to test and fine-tune different models.

import os
from getpass import getpass

if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
# Access token under https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
# `ID` listed in `$ gradient workspace list`
# also displayed after login at at https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")

Optional: Validate your environment variables GRADIENT_ACCESS_TOKEN and GRADIENT_WORKSPACE_ID to get currently deployed models. Using the gradientai Python package.

!pip install gradientai

Create the Gradient instance

documents = [
"Pizza is a dish.",
"Paris is the capital of France",
"numpy is a lib for linear algebra",
]
query = "Where is Paris?"
embeddings = GradientEmbeddings(model="bge-large")

documents_embedded = embeddings.embed_documents(documents)
query_result = embeddings.embed_query(query)
# (demo) compute similarity
import numpy as np

scores = np.array(documents_embedded) @ np.array(query_result).T
dict(zip(documents, scores))