Gradient
Gradient
allows to create Embeddings
as well fine tune and get
completions on LLMs with a simple web API.
This notebook goes over how to use Langchain with Embeddings of Gradient.
Imports
from langchain.embeddings import GradientEmbeddings
Set the Environment API Key
Make sure to get your API key from Gradient AI. You are given \$10 in free credits to test and fine-tune different models.
import os
from getpass import getpass
if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
# Access token under https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
# `ID` listed in `$ gradient workspace list`
# also displayed after login at at https://auth.gradient.ai/select-workspace
os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
Optional: Validate your environment variables GRADIENT_ACCESS_TOKEN
and GRADIENT_WORKSPACE_ID
to get currently deployed models. Using the
gradientai
Python package.
!pip install gradientai
Create the Gradient instance
documents = [
"Pizza is a dish.",
"Paris is the capital of France",
"numpy is a lib for linear algebra",
]
query = "Where is Paris?"
embeddings = GradientEmbeddings(model="bge-large")
documents_embedded = embeddings.embed_documents(documents)
query_result = embeddings.embed_query(query)
# (demo) compute similarity
import numpy as np
scores = np.array(documents_embedded) @ np.array(query_result).T
dict(zip(documents, scores))