CacheBackedEmbeddings
| sidebar_label: Caching |
Embeddings can be stored or temporarily cached to avoid needing to recompute them.
Caching embeddings can be done using a CacheBackedEmbeddings. The
cache backed embedder is a wrapper around an embedder that caches
embeddings in a key-value store. The text is hashed and the hash is used
as the key in the cache.
The main supported way to initialized a CacheBackedEmbeddings is
from_bytes_store. This takes in the following parameters:
- underlying_embedder: The embedder to use for embedding.
- document_embedding_cache: Any
ByteStorefor caching document embeddings. - namespace: (optional, defaults to
"") The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used.
Attention: Be sure to set the namespace parameter to avoid
collisions of the same text embedded using different embeddings models.
from langchain.embeddings import CacheBackedEmbeddings
Using with a Vector Storeβ
First, letβs see an example that uses the local file system for storing embeddings and uses FAISS vector store for retrieval.
!pip install openai faiss-cpu
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
underlying_embeddings = OpenAIEmbeddings()
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)
The cache is empty prior to embedding:
list(store.yield_keys())
[]
Load the document, split it into chunks, embed each chunk and load it into the vector store.
raw_documents = TextLoader("../../state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
Create the vector store:
%%time
db = FAISS.from_documents(documents, cached_embedder)
CPU times: user 218 ms, sys: 29.7 ms, total: 248 ms
Wall time: 1.02 s
If we try to create the vector store again, itβll be much faster since it does not need to re-compute any embeddings.
%%time
db2 = FAISS.from_documents(documents, cached_embedder)
CPU times: user 15.7 ms, sys: 2.22 ms, total: 18 ms
Wall time: 17.2 ms
And here are some of the embeddings that got created:
list(store.yield_keys())[:5]
['text-embedding-ada-00217a6727d-8916-54eb-b196-ec9c9d6ca472',
'text-embedding-ada-0025fc0d904-bd80-52da-95c9-441015bfb438',
'text-embedding-ada-002e4ad20ef-dfaa-5916-9459-f90c6d8e8159',
'text-embedding-ada-002ed199159-c1cd-5597-9757-f80498e8f17b',
'text-embedding-ada-0021297d37a-2bc1-5e19-bf13-6c950f075062']
Swapping the ByteStore
In order to use a different ByteStore, just use it when creating your
CacheBackedEmbeddings. Below, we create an equivalent cached
embeddings object, except using the non-persistent InMemoryByteStore
instead:
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import InMemoryByteStore
store = InMemoryByteStore()
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)