Skip to main content

Prompts

Prompts for chat models are built around messages, instead of just plain text.

You can make use of templating by using a MessagePromptTemplate. You can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate's format_prompt -- this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.

For convenience, there is a from_template method defined on the template. If you were to use this template, this is what it would look like:

from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)

template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
    AIMessage(content="J'adore la programmation.", additional_kwargs={})

If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, e.g.:

prompt=PromptTemplate(
template="You are a helpful assistant that translates {input_language} to {output_language}.",
input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)