Skip to main content

Astra DB

This page lists the integrations available with Astra DB and Apache Cassandra®.

Setup

Install the following Python package:

pip install "astrapy>=0.5.3"

Astra DB

DataStax Astra DB is a serverless vector-capable database built on Cassandra and made conveniently available through an easy-to-use JSON API.

Vector Store

from langchain.vectorstores import AstraDB
vector_store = AstraDB(
embedding=my_embedding,
collection_name="my_store",
api_endpoint="...",
token="...",
)

Learn more in the example notebook.

LLM Cache

from langchain.globals import set_llm_cache
from langchain.cache import AstraDBCache
set_llm_cache(AstraDBCache(
api_endpoint="...",
token="...",
))

Learn more in the example notebook (scroll to the Astra DB section).

Semantic LLM Cache

from langchain.globals import set_llm_cache
from langchain.cache import AstraDBSemanticCache
set_llm_cache(AstraDBSemanticCache(
embedding=my_embedding,
api_endpoint="...",
token="...",
))

Learn more in the example notebook (scroll to the appropriate section).

Chat message history

from langchain.memory import AstraDBChatMessageHistory
message_history = AstraDBChatMessageHistory(
session_id="test-session"
api_endpoint="...",
token="...",
)

Learn more in the example notebook.

Apache Cassandra and Astra DB through CQL

Cassandra is a NoSQL, row-oriented, highly scalable and highly available database. Starting with version 5.0, the database ships with vector search capabilities. DataStax Astra DB through CQL is a managed serverless database built on Cassandra, offering the same interface and strengths.

These databases use the CQL protocol (Cassandra Query Language). Hence, a different set of connectors, outlined below, shall be used.

Vector Store

from langchain.vectorstores import Cassandra
vector_store = Cassandra(
embedding=my_embedding,
table_name="my_store",
)

Learn more in the example notebook (scroll down to the CQL-specific section).

Memory

from langchain.memory import CassandraChatMessageHistory
message_history = CassandraChatMessageHistory(session_id="my-session")

Learn more in the example notebook.

LLM Cache

from langchain.cache import CassandraCache
langchain.llm_cache = CassandraCache()

Learn more in the example notebook (scroll to the Cassandra section).

Semantic LLM Cache

from langchain.cache import CassandraSemanticCache
cassSemanticCache = CassandraSemanticCache(
embedding=my_embedding,
table_name="my_store",
)

Learn more in the example notebook (scroll to the appropriate section).