DeepSparse
This page covers how to use the DeepSparse inference runtime within LangChain. It is broken into two parts: installation and setup, and then examples of DeepSparse usage.
Installation and Setupβ
- Install the Python package with
pip install deepsparse
- Choose a SparseZoo model or export a support model to ONNX using Optimum
Wrappersβ
LLMβ
There exists a DeepSparse LLM wrapper, which you can access with:
from langchain.llms import DeepSparse
It provides a unified interface for all models:
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none')
print(llm('def fib():'))
Additional parameters can be passed using the config
parameter:
config = {'max_generated_tokens': 256}
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none', config=config)